legendre5_associees.mws

>   

>    restart;with(plots):

Warning, the name changecoords has been redefined

>    bool:=proc(expression)
piecewise(expression,1,0);
end:

     

>    f:=(v,p,x,y)->(Re(LegendreP(v,p,x+I*y)),Im(LegendreP(v,p,x+I*y))):

>    m:=(v,p,x,y)->sqrt(f(v,p,x,y)[1]^2+f(v,p,x,y)[2]^2):
phi:=(v,p,x,y)->arctan(f(v,p,x,y)[2]/f(v,p,x,y)[1])+bool(f(v,p,x,y)[2]<0)*Pi:
Kx:=-1..1; Ky:=-1..1;Kz:=-200..200;

>    animate3d([x,y,m(5,p,x,y)],x=Kx,y=Ky,p=0..8,frames=30,view=0..500,
                              axes=BOXED,labels=["x","y","mod(f)"]);

Animation : (x, y, module) des polynômes de Legendre (0 < n < 8)

[Maple Plot]

>    plot3d([x,y,m(5,5,x,y)],x=Kx,y=Ky,view=0..1500,
                              axes=BOXED,labels=["x","y","mod(f)"]);

[Maple Plot]

>    plot3d([x,y,m(5,-5,x,y)],x=Kx,y=Ky,
                              axes=BOXED,labels=["x","y","mod(f)"]);

[Maple Plot]

Théorème d'addition

[Maple OLE 2.0 Object]

>    p:=9:

>   

>    u:=(n,x,y,z)->LegendreP(n,0,cos(x)*cos(y)+cos(z)*sin(x)*sin(y));

u := proc (n, x, y, z) options operator, arrow; LegendreP(n,0,cos(x)*cos(y)+cos(z)*sin(x)*sin(y)) end proc

>    knm:=(n,m)->GAMMA(n-m+1)/GAMMA(n+m+1);

knm := proc (n, m) options operator, arrow; GAMMA(n-m+1)/GAMMA(n+m+1) end proc

>    v:=(n,m,x,y,z)->knm(n,m)*LegendreP(n,m,cos(x))*LegendreP(n,m,cos(y))*cos(m*z);

v := proc (n, m, x, y, z) options operator, arrow; knm(n,m)*LegendreP(n,m,cos(x))*LegendreP(n,m,cos(y))*cos(m*z) end proc

>    vs:=(n,x,y,z)->sum('v(n,k,x,y,z)','k'=1..n);

vs := proc (n, x, y, z) options operator, arrow; sum('v(n,k,x,y,z)',('k') = 1 .. n) end proc

>    plot3d(u(p,x,y,Pi/3),x=0..Pi,y=0..Pi,view=-3..3,axes=BOXED);

[Maple Plot]

>    plot3d(vs(p,x,y,Pi/3),x=0..Pi,y=0..Pi,view=-3..3, axes=BOXED);

[Maple Plot]

>   

>   

Maple TM is a registered trademark of Waterloo Maple Inc.
Math rendered by WebEQ